“妈,今年我就不回去了,顺利的话明年年初回去看望你们。”
“我不是在外面瞎玩,休学也不是退学,您二位别紧张哈,我知道我在做什么。”
“也不用给我打钱,我也不是在创业,只是这段时间需要集中精力解决一些问题。就今年底,您放心,就今年底。如果不成功,您说什么我都听您的。”
“好,好嘞,记得叫老爸多出去运动,你们注意身体哈!”
“回,回去。过年的时候一定回去。”
挂了电话,孟繁岐靠在墙上,长长地叹了一口气。
这些事情实在跟父母解释不清楚,若不是因为担心付院长会出手相助,他原本是不打算去办休学的。
现在父母了解到如今的情况,肯定是忧心忡忡。最近几次通话,不管自己怎么说,父母总是没法放下心来。
孟繁岐只能靠着年底的期限安抚他们一下,承诺只要今年不能取得杰出的成果,就什么都听他们的。
看着房间里幸灾乐祸在调参的唐璜,孟繁岐没好气道,“笑什么笑。”
唐璜瞬间做出一个严肃认真的表情,但不论怎么看都带着三分阴阳怪气的感觉,让人很是不爽。
------------------------
这天的迟些时候,孟繁岐收到了阿里克斯的回复,看了眼时间点,阿里克斯应该是一起床就回复了邮件,可以说是相当勤奋了。
这个时间点已近临近今年赛事快要开始的时刻,不过阿里克斯本人其实没有计划继续组队参与本次的赛事。
只是哥虽然不在江湖,江湖却到处都是哥的传说。
13年的微软研究院队伍,新加坡国立大学队伍,和贾扬清领衔的Decaf,UC伯克利等队伍,都深受阿里克斯去年思想的影响。
根据阿里克斯介绍的办法,孟繁岐很快调试完成,顺利将批归一化,Adam优化器等操作从自己实验的环境迁移到cuda-convnet框架上,做了一些调整和适配。
没过过久,便已经在CIFAR-10上运行了起来。
接下来便是本次参赛的最核心竞争力,残差网络在这个框架上的实现。
“今年的IMAGENET挑战赛其实没有什么太多的新想法,大家基本上都是以复现阿里克斯的算法为主。”
孟繁岐当然不准备和其他队伍一样,基于阿里克斯的框架去重新实现阿里克斯去年的参赛算法,早期的许多算法在参数量和计算量上都有很大的冗余。
“谷歌的GoogleNet和牛津的VGGNet原本要明年才能研究出来,不过我今年参赛之后,这两个AI历史上的重要网络恐怕就要胎死腹中了吧?”
别说是现在了,截止到14年末,多余的设计仍旧大量存在与谷歌和牛津大学的算法当中。
直到15年,那个男人以残差网络ResNet夺冠ImageNet-2015,铸就了深度学习时代的AI模型的神格。
残差思想是孟繁岐此时此刻的最佳选择,一方面它会成为深度学习时代的里程碑,因为它的核心思想,就是如何把深度网络做得更加‘深’。
另一方面,它的实现和结构简洁,抛弃了大量人类看来很有道理和价值,但实际上其实用处不大的设计。